Polynomial dictionary learning algorithms in sparse representations
نویسندگان
چکیده
منابع مشابه
Greedy algorithms for Sparse Dictionary Learning
Background. Sparse dictionary learning is a kind of representation learning where we express the data as a sparse linear combination of an overcomplete basis set. This is usually formulated as an optimization problem which is known to be NP-Hard. A typical solution uses a two-step iterative procedure which involves either a convex relaxation or some clustering based solution. One problem with t...
متن کاملDictionary Learning Algorithms for Sparse Representation
Algorithms for data-driven learning of domain-specific overcomplete dictionaries are developed to obtain maximum likelihood and maximum a posteriori dictionary estimates based on the use of Bayesian models with concave/Schur-concave (CSC) negative log priors. Such priors are appropriate for obtaining sparse representations of environmental signals within an appropriately chosen (environmentally...
متن کاملNon-Parametric Bayesian Dictionary Learning for Sparse Image Representations
Non-parametric Bayesian techniques are considered for learning dictionaries for sparse image representations, with applications in denoising, inpainting and compressive sensing (CS). The beta process is employed as a prior for learning the dictionary, and this non-parametric method naturally infers an appropriate dictionary size. The Dirichlet process and a probit stick-breaking process are als...
متن کاملDictionary Learning with Large Step Gradient Descent for Sparse Representations
This work presents a new algorithm for dictionary learning. Existing algorithms such as MOD and K-SVD often fail to find the best dictionary because they get trapped in a local minimum. Olshausen and Field’s Sparsenet algorithm relies on a fixed step projected gradient descent. With the right step, it can avoid local minima and converge towards the global minimum. The problem then becomes to fi...
متن کاملSMALLbox - An Evaluation Framework for Sparse Representations and Dictionary Learning Algorithms
SMALLbox is a new foundational framework for processing signals, using adaptive sparse structured representations. The main aim of SMALLbox is to become a test ground for exploration of new provably good methods to obtain inherently data-driven sparse models, able to cope with large-scale and complicated data. The toolbox provides an easy way to evaluate these methods against state-of-the art a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Signal Processing
سال: 2018
ISSN: 0165-1684
DOI: 10.1016/j.sigpro.2017.08.011